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In conclusion we mention the unusual course of deformation of the region of flow 
with increasing cp+ in the case when a reverse current exists even when q+ = 0 (e. g. 

when a = 0.4, p = 4). When q+ increases, the region of flow varies from one infi- 
nitely large as the singularity first appears at infinity, to one localized in the central 

part at y = 0. 

The author thanks A. 3. Vatazhin for help. 
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It is established that several types of the ionization and recombination waves 
may occur in a weakly ionized plasma containing additions of an easily ion- 

izable component, in the presence of a magnetic field, The rate of propaga- 
tion of such waves are determined by the conditions arising from the fact that 
the waves have certain structures. It is shown that the waves considered in the 

present paper satisfy the criterion of evolutionarity. 
The problem of propagation of an ionization wave through a weakly ionized 

plasma in the absence of a magnetic field was first posed in P]. The expres- 
sion obtained there for the rate of propagation of the ionization wave was con- 

firmed experimentally in p], but at the same time the experimental data ob- 
tained in [3, 41 disagreed with the results of F]. The analysis in [1] was per- 
formed for a model of two-fluid hydrodynamics and it was assumed that the 
plasma is in the state of ionization equilibrium, A motion of the ionization 
wave during which this eq~librium is disturbed, was studied in [S]. A study of 
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the structure of the ionization shock waves (the conductivity in such waves 
varies from zero to infinity) in a single-fluid model of magnetohydrodynamics 
was initiated in [6] and taken up by a number of authors (see survey n]) . A 
comprehensive survey of the ionization discontinuities of various types is also 
given in [8]. 

Below we study the ionization and recombination waves in a plasma contain- 

ing additions of an easily ionizable component when the influence of the Hall 
effect is significant and the temperature of electrons exceeds the temperature 
of the heavy particles by many times. 

1, Let US consider a plasma composed of heavy particles (atoms and ions) and elec- 
trons, assuming that the parameters of the heavy particles (pressure, temperature T and 
density) are known and vary little within the characteristic domain of strong variation 

of the basic electron parameters. We assume that the time in which the ionization equi- 

librium is attained, is considerably shorter than the characteristic time of the problem, 
and for this reason the electron concentration rz and their temperature T, depend on 
each other 

n = n. (T,) (1.1) 

In the simplest case this relation can be obtained using the Saha equation. 

A system of equations describing the state of the medium has the form 

div j = 0, rot E = 0, j + [ jn] = GE 

I $+ueVn 
i i 

+divq==-$--N_ 

IV- = 3i’,k6T,nf, q + [qst] = - IVT, 

z = (2 r&l&P, 1 7iyBr fz= 
‘, t 

(1.2) 

Here j is the electric current density, E is the electric field strength, z is the time 

of collision of an electron with the remaining plasma particles, Q,, is the collision 

cross section between the electron and the particles of the type r, Q is the Hall para- 
meter, B is the magnetic field induction, the coefficients of the electrical o (n, TP) 

and the heat h (n, T,) conductivity are known functions of the electron temperature 

and concentration, U, is the velocity of electrons, 6 is the amount of energy given up 
by the electrons colliding with the heavy particles (in general 6 is a function of the 
temperature of both, the electrons and the heavy particles). When the medium in ques- 
tion contains an addition of an easily ionizable component and the degree of ionization 
of the basic component is small in the range of temperatures considered, f is the ion- 
ization potential of the additive. The effect of the induced field is neglected and the 
constant external magnetic field is directed along the z-axis. 

The manner in which the radiation effects exert their influence, depends on the com- 

position of the plasma and on the temperature range. If the losses due to radiation can 

be described in an algebraic form, then this simply alters the form of the function IV_ 

in the fourth equation of (1.2). If on the other hand the radiation is accounted for by 
means of the radiant thermal conductivity, then the functional dependence X=51 (n, TJ 
itself is altered. The method of constructing the solution which is discussed below re- 
mains the same, and the influence of radiation is neglected in the present investigation. 



Waves of ionization and recombination In a plasma 787 

The system (1.1). (1.2) admits a homogeneous solution stationary over the whole region and 
this solutionis obtained by equating to zero the right-hand side of the fourth equation of 

(1.2). If in addition we linearize the system (1.1). (1.2), then for the values of the Hall 
parameter exceeding its critical value a_, this stationary state is unstable and an ion- 

ization-type instability develops in the plasma [9]. We shall bypass the problem of the 
manner in which the ionization-type instability develops in the presence of nonlinear 

effects (this was dealt with in [IO]) and consider the types of the ionization and recom- 
bination waves in a plasma containing an easily ionizable component. The electron 

concentration (electron temperature) in these waves varies. Obviously, these waves 
resemble the ionizing shock waves discussed in p] except for the fact that the conduc- 
tivity of the medium behind such wave fronts is finite and the heavy particle parame- 

ters do not vary. 
We shall assume that the surface of the discontinui~ coincides with the yoz -plane 

and that the parameters of the medium vary in the normal direction which in the pre- 
sent case coincides with the x-axis. In this case the first and second equation of (1.2) 

express the law of conservation of the normal component of the electric current density 
and of the tangential electric field component during the passage across the surface of 
discontinuity 

jz = j. = const < 0, E s E, = const (I. 3) 

From the third and fourth equation of (1.2) we find, with(l.3) taken into account, 

that the structure of such waves is described by 

If the length of the transition zone is small, we can consider an infinitely thin surface 

of discontinuity at which the parameters jV, E,, n and T, vary in jumps. It is clear 

that the relations obtained from the third equation of (1.2) and (1.1). n.jo2 N+ / o = N_ 
are insufficient to determine the four parameters of the medium ahead (behind) the wave 

and the velocity of motion W of the wave itself, by the known parameters of the me- 

dium behind (ahead) the wave. Additional relations (in the present case a single rela- 
tion) are determined by analysing the wave structure [11] . 

Having obtained n, and T, from the relation jo2 = oON_ (no, T,), we introduce 

the dimensionless narameters 

and seek the solution of (X.4) in 

s = s (E), E = 

p=&, t+A.!$, 

x_ =L 2_ 
L ’ 

t_ - +- 

the form 

z- - Wt, w > 0, j* < 0 

In this case the wave structure is described by the following equation and the bound- 

ary conditions : d A(s) ds 
----((U-w)$+F=O 
dc 1 j-Q2 dE, 

(1.ci) 

F = N, - N-50 1 jo= 
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(1.7) 

s(c+=s~,s(-oo)=si,i#j 

Clearly, the states ahead and behind the wave represent the equilibrium points of (1.6), 
or of equivalent system of ordinary differential equations 

2, The equilibrium pointsofsystem (1.8) are zeros of the function F. The number 
of equi~brium points, their indices and the values of the plasma parameters at an equi- 

librium point all depend on jO, k’, the magnetic field induction (Hall parameter) and 

the composition of the plasma. The composition of the plasma influences the position 
of the equilibrium points by virtue of the specific relationship connecting it with the 

collision cross section of the electrons and heavy particles, and hence through the ther- 

mal conductivity and electric conductance. Let us consider, for definiteness, the tempe- 

rature range from $03 to 10” “K and the argon plasma containing an addition of easily 
ionizable cesium. When the magnetic field is absent, two equilibrium points exist, the 

node (so, 0) and the saddle point (sr, 0). A separatrix emerging from the singularity 

(so, 0) and arriving at (st, 0) corresponds to the ionization wave. The electron con- 
centration in the wave varies from zero to some finite value. The structure of such a 

wave was investigated in [l] and shall not be discussed here. 
When the Hall parameter reaches a certain value Q_, the solution bifurcates and four 

equilibrium points si, j = 0,1,2,3 exist for Q+ > Sz > a_. When Q < Q_ , the 
number and the character of the singularities remain unchanged. In the range T, > T, 

Fig. 1 
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we have, for f& < Q < fz, three equilibrium points sl? 5% and s3. When f2 > St, 
these points again reduce, in the given temperature range, CO a single point which is a 

saddle point. A bifurcation diagram showing the dependence of the equilibrium points 

of (1.8) on the electric field (B, = const) is given in Fig. 1 which depicts the depen- 
dence of the electron temperatures (T,, T,, T3) at the equilibrium points on the mag- 

nitude of the electric field for the argon plasma containing cesium, for B = 0.3 tesla 
(a) and B = 2.0 tesla (b), When E < E_ , a single saddle-type equilibrium point 
exists, while for E_ ( El < E, there are three equi~b~um points, The points (a3 0) 

and (s3, 0) are saddle points and (ss, 0) can be either a node or a focus ; the focus can 
be either stable or unstable. The latter property is determined by the rate of propagation 

of the wave front. 
From the study of the character of the phase trajectories it follows that when i. < c) 

and W > 0 *two types of ionization waves are possible: the first type corresponds to 

the passage from (sl, 0) to (s3, O), and the second type to the passage from (~a, 0) 

to (s3, 0). If the point ($s, 0) is a node, then the ionization wave has a monotonous 

character: if on the other hand (ss, CI) is an unstable focus, then the wave structure is 
of oscillatory character. Considering the wave ssucture we find that the velocity of the 

second type wave (passage from (sa, 0) to (s3, 0)) is smaller than the velocity of the 
first type wave. 

The electron velocity U, is the characteristic velocity of propagation of small per- 

turbations of the system (1.2). Introducing the quantity any = 1w / u,, 1 equal to the 
ratio of the velocity of propagation of the wave front to the velocity of propagation of 

sma1I perturbations in the corresponding homogeneous state, we find that from the ioni- 
zation waves of the first type we have ml > 3 and ma < 1, The subscript (1) des- 
cribes the state ahead the wave and (2~~ tntl: state behind the wave. For the second type 
waves we have 

The waves differ physically from each other in that the first type waves undergo a 

stronger jump in the value of the electron concentration [the temperature jump} than 
the second type waves, and their wave front propagates at a greater rate, Which of the 
possible types of the ionization waves is realized under the given conditions depends un 

the external parameters given and on the boundary conditions that have to be satisfied, 
Considering the phase trajectories we find that the passage from the point (Q, 0) when 

it is a stable focus to (sz, 01, is not possible. Moreover, we do not consider the case 

when the system (1.6) admits solutions different from the ionization or recombination 
waves, since all these problems as well as the case of lo > 0 and W < 0, were in- 

vestigated in [lo]. 
Let us consider certain possible types of recombination waves characterized by a drop 

in the concentration and temperature of the electrons during the passage across the wave 

surface, Waves of this type correspond to the passages from (~a, 0) to (si, 0) (first 
type) and from (sa, 0) to (say 0) (second type). For the recombination waves of the 
first typo we have m, > rf and ma ( 1 and for the second type we have 1 < m2 < 

ml- 

3, When the plasma is not in the state of ionization equilibrium, Eq. (1.1) is invalid 
and must be replaced by another equation describing the kinetics of ionization and re- 
combination 
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(3.1) 

n H = n, + ni 

Here nH is the initial concentration of the additive, M, and M_ denote the intensity 

of the sources of production and annihilation of electrons. In its general form the equa- 
tion may become very cumbersome, therefore we shall limit ourselves to the case when 

the ionization takes place due to the impact of electrons, and the recombination due to 
triple collisions, We have 

M, - M_ = k, (Rn,n, - n,3) (3.2) 

where R is the equilibrium constant of the reaction and k, is the recombination coef- 

ficient which is a known function of the plasma parameters. 
The structure of the ionization or recombination waves is described by the following 

equations : 
as dAi i ds 

-((w-U)=---- d< 1 + 522 d< 
z h_,+ (R+n+s - s3) 

as d A d0 F 
- (W -.U)Jjg - dE * +_ p x - 

(3.3) 

where k,+ - T, / a, is the ratio of the time of the Joule dissipation heating to the 

time of ionization. 
From the above relationships it follows that the equilibrium points of the systems (1.6) 

and (3.3) coincide, since the Saha equation follows from the condition &f_ = M,. 
Consequently everything that has been said in Sect.2 about the number of singularities 

and their character remains valid, the only change being in the character of the distri- 
bution of the plasma parameters within the wave structure. 

4. We shall show that the ionization and recombination waves of the second type 
discussed above satisfy the evolutionarity condition. This condition states that the num- 

ber of relations on the surface of discontinuity must exceed the number of small pertur- 
bation waves moving away from the discontinuity, by unity. The equations must suffice 

for determination of the amplitudes of the departing waves and the wave front velocity 
in terms of the known amplitudes of the waves incident on the surface of discontinuity 
l-121. In fact, for both,the ionization wave and recombination wave (of the second type), 
there exists a single wave of small perturbations, moving away from the surface of dis- 
continuity. For the ionization wave this perturbation wave moves upstream, and for the 
recombination wave it moves downstream. The number of relationships on the surface 
of discontinuity which can be written in the form 

F = 0, n 1 n (T,,), W = W (S ,...) (4.1) 

is sufficient for determination of the amplitude of the wave of small perturbations, mov- 
ing away from the surface of discontinuity (in the given case - the perturbations of the 



Waves of ionization and recombination in a plasma 791 

electron concentration and their temperature), and the rate of propagation W(i) of the 
dis~ntiuui~. The third equation of (4.1) connects the rate of motion. of the wave front 
with the parameters on both sides of the discontinuity, and is obtained from the condi- 

tion of existence of the wave structure. 
In addition to the moving waves, the standing ionization or recombination waves 

may exist. For such waves W = 0 and the point (ss, 0) is a stable node or focus. 

A general solution of the problem satisfying Eqs.(l.l) and (1.2) for two-dimensional 
or tree-d~men~onal regions may be composed of several regions with constant or con- 

tinuously varying parameters, separated by moving or standing ionization or recombina- 
tion waves, For example, the case depicted in Fig. 2 (phase curve for E = 2 V/cm, 

B = 0.3 tesla, argon plasma with addition of cesium, 8 = T, / T,, T, = 2593 “K) 
can correspond to the ionization wave ABC and the recombination wave CD.4 follow- 
ing each other. The parameters of the medium are constant between these two waves. 

Fig. 2 

Investigation of the stability of the ionization and recombination waves of the first 

and second type has shown that these waves have a stable structure. 

The author thanks G. A. Liubimov and A. G, Kulikovskii for the useful discussion on 

the results of this paper. 
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To describe the motion of an avalanche we use “hydraulic” models, one ver- 

sion of which for a one-dimensional motion was proposed in [l]. An asymp- 
totic solution as t -+ 00 was constructed in p] for the equations proposed in 
[l] for the case of a slope of constant steepness with a uniform snow cover. 
Below we investigate the asymptotic behavior of the solution of a two-dimen- 
sional problem of the motion of a snow avalanche along a slope of varying 
steepness, on which snow with varying properties lies. It is assumed that the 
typical linear scale of variation of these quantities is sufficiently large. 

1. Statement of the problem. The equations of two-dimensional motion 

of a snow avalanche, analogous to those proposed in [l] for the one-dimensional case, 
are written in the form 

dh / dt -i_ h div v = 0 (1.1) 

dV 
- 

dt=-_ 3”1, grad (h2 cos $) + eg sin $ - F (u, h, x, y) v (1.2) 

Here u is the snow’s velocity averaged over the thickness, h is the thickness of the 
moving snow layer, -+ is the angle between the horizontal plane and the tangent plane 
to the slope at a point being considered, e is a vector lying in the tangent plane and 


